Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Ayuda ejercicio AM I. Polinomio Taylor
Autor Mensaje
Cris788614 Sin conexión
Empleado de Fotocopiadora
¿Qué estás pensando?
**

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 36
Agradecimientos dados: 15
Agradecimientos: 2 en 2 posts
Registro en: Jul 2014
Mensaje: #1
Ayuda ejercicio AM I. Polinomio Taylor Dudas y recomendaciones Análisis Matemático I
Chicos a ver si alguno me puede tirar un centro con este ejercicio:

"Sea y=f(x) definida explícitamente por x^3+xy+ln y=10. Determinar:

- polinomio de taylor de orden 2, asociado a "x-2"
- ecuacion recta tg a la curva y=f(x) en (2,f(2))"

Tengo una idea de como resolverlo mas o menos, pero que no este en funcion de x y sí de xy me complica algo y no sé si tengo que despejar 'y' para que quede en funcion de 'x' y de ahí sacar derivada primera y segunda, o se resuelve de otra manera.

Gracias de antemano
28-06-2015 06:25
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.753
Agradecimientos dados: 175
Agradecimientos: 1.663 en 913 posts
Registro en: Sep 2009
Mensaje: #2
RE: Ayuda ejercicio AM I. Polinomio Taylor
(28-06-2015 06:25)Cris788614 escribió:  Chicos a ver si alguno me puede tirar un centro con este ejercicio:

"Sea y=f(x) definida explícitamente por x^3+xy+ln y=10. Determinar:

Debe ser implicitamente por ....... no explicitamente

Cita:- polinomio de taylor de orden 2, asociado a "x-2"
- ecuacion recta tg a la curva y=f(x) en (2,f(2))"

Tengo una idea de como resolverlo mas o menos, pero que no este en funcion de x y sí de xy me complica algo y no sé si tengo que despejar 'y' para que quede en funcion de 'x' y de ahí sacar derivada primera y segunda, o se resuelve de otra manera.

Gracias de antemano

si maso menos por ahi anda la mano... pero aca vos la f no la tenes, y despejar y de la implicita que te dan , es imposible con los metodos que conoces , entonces lo que podes hacer es aproximar a f por su polimio de orden 1 (entiendase recta tangente)



el valor de P(2) lo obtenes de la ecuacion implicita que te dan , como vamos a aproximar a f por P entonces solo es reemplazar el 2 en esa ecuacion , o sea



a ojimetro sacas que y=1, entonces el punto por donde pasa la recta tangente (y tambien la normal es ) A=(2,1)

con eso ya sabes que



para obtener tenes que hacer derivacion implicita sobre la ecuacion que te dan .

luego derivas una vez mas para obtener el polinomio que te piden .

Se entiende ?

28-06-2015 08:28
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 1 Gracias por este post
Cris788614 (28-06-2015)
Cris788614 Sin conexión
Empleado de Fotocopiadora
¿Qué estás pensando?
**

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 36
Agradecimientos dados: 15
Agradecimientos: 2 en 2 posts
Registro en: Jul 2014
Mensaje: #3
RE: Ayuda ejercicio AM I. Polinomio Taylor
(28-06-2015 08:28)Saga escribió:  
(28-06-2015 06:25)Cris788614 escribió:  Chicos a ver si alguno me puede tirar un centro con este ejercicio:

"Sea y=f(x) definida explícitamente por x^3+xy+ln y=10. Determinar:

Debe ser implicitamente por ....... no explicitamente

Cita:- polinomio de taylor de orden 2, asociado a "x-2"
- ecuacion recta tg a la curva y=f(x) en (2,f(2))"

Tengo una idea de como resolverlo mas o menos, pero que no este en funcion de x y sí de xy me complica algo y no sé si tengo que despejar 'y' para que quede en funcion de 'x' y de ahí sacar derivada primera y segunda, o se resuelve de otra manera.

Gracias de antemano

si maso menos por ahi anda la mano... pero aca vos la f no la tenes, y despejar y de la implicita que te dan , es imposible con los metodos que conoces , entonces lo que podes hacer es aproximar a f por su polimio de orden 1 (entiendase recta tangente)



el valor de P(2) lo obtenes de la ecuacion implicita que te dan , como vamos a aproximar a f por P entonces solo es reemplazar el 2 en esa ecuacion , o sea



a ojimetro sacas que y=1, entonces el punto por donde pasa la recta tangente (y tambien la normal es ) A=(2,1)

con eso ya sabes que



para obtener tenes que hacer derivacion implicita sobre la ecuacion que te dan .

luego derivas una vez mas para obtener el polinomio que te piden .

Se entiende ?

Listo, se entendió Saga, muchas gracias por la mano!

Pd: Sí, tenes razón ahi arriba es "implícitamente por..."

Un abrazo
28-06-2015 16:04
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.