Donar $20 Donar $50 Donar $100 Donar mensualmente
 


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Ejercicios complicaditos de parcial de AMI
Autor Mensaje
nicolasAM Sin conexión
Empleado del buffet
Sin estado :D
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 3
Agradecimientos dados: 0
Agradecimientos: 1 en 1 posts
Registro en: Jan 2017
Mensaje: #1
Ejercicios complicaditos de parcial de AMI
Buenas,
ando preparando recuperatorios de AMI y resulta que no encuentro por ningún lado la respuesta a un par de ejercicios de parciales que hice (que obviamente están mal) los cuales andan un poquito picantes, ya que aplicando fórmulas y todo (que, creo, están correctamente hechas) llego a unos resultados que nada que ver. Los paso a ver si algún alma caritativa que sepa sobre el tema me pueda responder.

1) Sea f: D C |R -> |R / Se sabe que g es derivable en Xo = 0 y que la ecuación de la recta tangente a la curva gráfica correspondiente a y=g(x) en A = (0; g(0)) es: y=2x
Analizar si f es derivable en Xo=0.

f(x) = { g(x)/x * sen^2|x| si x<0
ln(1+x) si x>=0

llego por mis medios a que la función es continua.
Problema:
Cuando aplico el cociente incremental para saber si f es derivable me queda:
límx->0 ((g(x) / x * sen^2(x) - g(0) / 0 * sen^2(0)) / x - 0)

Y como claramente g(0) / 0 = 0 / 0 (por lo menos así lo veo yo) digo que el límite ese no existe, ya que no veo forma de poder salvar dicha indeterminación (no hay x así que no puedo hacer nada con los números, creo yo??). Y de forma subsiguiente veo el ejercicio hermosamente tachado con una birome roja, cual espadazo en el corazón </3

2) Sea f:[a; b] C |R -> |R / f' > 2 para todo x perteneciente a |R. Si f(a) < 2a , f(b) > 2b probar que la ecuación f© = 2c tiene al menos una solución real en (a; b). ¿Es única? Fundamentar la respuesta.

Acá se que hay que aplicar Bolzano
Primero se dice que f es continua en su definición.
Segundo se construye una función tal que h(x) = f(x) - 2x
Pero hasta ahí llego, porque después reemplazo las ecuaciones y digo que el producto h(a) * h(b) < h© tiene solución real por teorema de Bolzano y me aparecen signos de pregunta en la hoja por parte de mi linda profesora =D

3) El polinomio de Mac Laurin asociado a g en potencias del binomio "x" es:
P(x) = 2x + 4x^2
Hallar el polinomio de Mac Laurin de segundo orden, asociado a f(x) = e^(g(x))

Yo leí en algún lado de mi carpeta, así que no invento, cuando digo que P(x) es aproximadamente igual a f(x), por lo que planteo eso en la hoja, y me aparece un cartel gigante diciendo "error conceptual". Por lo que todo el ejercicio está mal. ¿Qué se debe hacer en este ejercicio?

Desde ya gracias a quienes puedan aportar algo, lo que sea, hasta una idea jaja. Estoy en el horno feo con esto.
Saludos!
30-01-2017 08:15
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.