Donar $20 Donar $50 Donar $100 Donar mensualmente
 


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Mindfucks/cosas interesantes
Autor Mensaje
gonnza Sin conexión
User Verde

*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 17.259
Agradecimientos dados: 780
Agradecimientos: 785 en 328 posts
Registro en: Mar 2010
BlogSpot Google+ YouTube
Mensaje: #31
RE: Mindfucks/cosas interesantes
Pero en un monton de lados aparece "pi" a secas, so, es lo mismo (!)

[Imagen: v34BEFt.gif]
09-11-2011 23:10
Encuentra todos sus mensajes Cita este mensaje en tu respuesta
Monoantunes Sin conexión
Campeon del cubo Rubik
bomberman
****

Ing. Química
Facultad Regional Buenos Aires

Mensajes: 115
Agradecimientos dados: 3
Agradecimientos: 16 en 5 posts
Registro en: Mar 2010
Mensaje: #32
RE: Mindfucks/cosas interesantes
(08-11-2011 16:42)Dem0 escribió:  Ni idea, pero por ahí alguien ve la imagen y se prende a hacerlo =D


Volviendo un poco a la matemática, algo de teoría de números:

Yo tengo una lista infinita de numeros reales entre 0 y 1 (con infinitos decimales cada uno):

.641392652...
.33333333...
.182818288...
.218884828...
.212268562...
.595132185...
...

Si tomo los dígitos de la diagonal y les resto 1, me queda el número: .521751... (también con infinitos decimales, todos sacados de la diagonal)

Ese número no va a existir en la lista, porque el primer dígito es diferente al primer dígito del primer número, el segundo es diferente al segunto del segundo, etc, etc, etc.

"Pero si tenes una lista infinita de todos los números entre 0 y 1, como la cantidad de números reales entre 0 y 1 también es infinita, deberían entrar en la lista, porque también es infinita, ¿no?"

No. El método de arriba siempre te va a dar un número que no existe en la lista.

En otras palabras, siempre va a existir un número que no existe en una lista infinita de números con infinitos decimales. Ninguna lista infinita va a poder ser completa.

NOTA: aclaro que si bien había leído someramente sobre el argumento diagonal de Cantor, nunca me había tomado el trabajo de leer el razonamiento concreto que implica. Puede que patine en algún detalle.

En sí lo que establece Cantor es la diferencia en la cardinalidad (el "tamaño") entre los conjuntos infinitos contables (como o ) e incontables (como o ). El hecho es que, dada cualesquier colección infinita contable (e.d. discreta) de secuencias de dígitos, ésta no admite una correspondencia uno a uno con una colección infinita incontable análoga (e.d. continua), dado que el procedimiento de construcción que propone el argumento, permite obtener siempre una secuencia de dígitos adicional en el primer caso. De hecho, partiendo de la colección contable arbitraria inicial, uno puede construir una secuencia adicional usando el argumento, añadirla a la lista e iterar el proceso indefinidamente, sin nunca obtener una lista "completa" en el sentido que el argumento resulte inválido (e.d. un conjunto continuo).

El hecho de que las dos "infinitudes" (discreta y continua) tengan una cardinalidad diferente, siendo mayor la del segundo caso por sobre la del primero, implica que hay "infinitos mayores y menores". La Hipótesis del Continuo (propuesta por Cantor en 1874 y levantada por Hilbert en su lista de problemas de 1900) que afirma que:

"no existe conjunto alguno cuya cardinalidad resulte intermedia entre la de los números naturales y la de los números reales" (e.d. básicamente, entre conjuntos discretos y continuos).

Esta hipótesis fue probada independiente del sistema formal sobre el cual se construyen las matemáticas estándar que conocemos y amamos (es decir, la lógica de primer orden equipada con lista de axiomas de la teoría de conjuntos de Zermelo-Fraenkel, o ZFC) así es que no es "ni verdadera ni falsa" en el sentido de la semántica que asignamos a las matemáticas tradicionales: uno puede aceptarla como axioma y extender el sistema formal, o aceptar su negación como axioma (análogamente al caso de las geometrías no-euclideanas que alguien andaba comentando, con la sustitución del postulado del paralelismo de rectas, que fue probado independiente del resto de la lista de axiomas; con lo cual uno es libre de expandir la geometría a los casos citados sin caer en contradicción, suponiendo que el sistema original fuese consistente).

Sobrio no te puedo ni hablar: estoy perdido sin mi estupidez

[Imagen: images?q=tbn:ANd9GcQD94z6JeK8XbPnHLiPMpr...qBVhqCP8xQ]

No supo repartir sus fichas, y su cielo ennegrece
(Este mensaje fue modificado por última vez en: 10-11-2011 00:56 por Monoantunes.)
10-11-2011 00:45
Visita su sitio web Encuentra todos sus mensajes Cita este mensaje en tu respuesta
gonnza Sin conexión
User Verde

*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 17.259
Agradecimientos dados: 780
Agradecimientos: 785 en 328 posts
Registro en: Mar 2010
BlogSpot Google+ YouTube
Mensaje: #33
RE: Mindfucks/cosas interesantes
Zarpada la eversion de la esfera

[Imagen: v34BEFt.gif]
10-11-2011 00:54
Encuentra todos sus mensajes Cita este mensaje en tu respuesta
rulo Sin conexión
Ultra Nerd Mod
By demons driven!
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 4.325
Agradecimientos dados: 49
Agradecimientos: 61 en 36 posts
Registro en: Apr 2009
BlogSpot
Mensaje: #34
RE: Mindfucks/cosas interesantes
(09-11-2011 19:35)rld escribió:  http://tauday.com/

Dice que pi esta "mal", en el sentido de que tendriamos que haber definido pi en relacion al radio de un circulo y no a su diametro. Definiendo nos quedan cosas mas "hermosas" como que representa medio giro de un circulo, un giro entero, , etc.

En realidad pi es el área del circulo de radio 1.Se le dice "pi" desde toda la vida según tengo entendido.
Los egipcios fueron los primeros en acotar el área "cuadrando" el círculo.El ángulo al que tiene que girar un círculo se eligío como (doble del sector que tenés en cuenta)/r^2 porque esa razón no varía si agrandas o dilatas el círculo.Igual de ahí,pasar a tau es un cambio de variables nomás.

Eso si uno le cree a Tom Apostol,claro =P.
Edit,se entendio lo que quisiste decir pero este post es puramente Trollface

Cita:Absolve me, save my reign
Have you forgotten me?
(Este mensaje fue modificado por última vez en: 10-11-2011 02:49 por rulo.)
10-11-2011 00:59
Encuentra todos sus mensajes Cita este mensaje en tu respuesta
rulo Sin conexión
Ultra Nerd Mod
By demons driven!
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 4.325
Agradecimientos dados: 49
Agradecimientos: 61 en 36 posts
Registro en: Apr 2009
BlogSpot
Mensaje: #35
RE: Mindfucks/cosas interesantes
Bueno,uppeo,porque este es alto thread(?) una demostración sin palabras de que el area del círculo es partiendo del hecho de que la longitud de la circunferencia (que es como todos sabemos).


http://gaussianos.com/demostracion-sin-p...n-circulo/

Cita:Absolve me, save my reign
Have you forgotten me?
(Este mensaje fue modificado por última vez en: 17-12-2011 03:54 por rulo.)
16-12-2011 19:59
Encuentra todos sus mensajes Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.