Donar $20 Donar $50 Donar $100 Donar mensualmente
 


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Probabilidad y Estadística] Eje 30 y 36, guia 1
Autor Mensaje
Elaguila Sin conexión
Empleado de Fotocopiadora
Sin estado :(
**

Ing. Civil
Facultad Regional Buenos Aires

Mensajes: 46
Agradecimientos dados: 0
Agradecimientos: 35 en 5 posts
Registro en: Feb 2011
Mensaje: #1
[Probabilidad y Estadística] Eje 30 y 36, guia 1 Ejercicios Probabilidad y Estadística
Buenas gente haciendo ejercicios de esta materia que en parte me vuelve loco, me trabe con 2 ejercicios de la guia.
Ej. 30) 2 Maq automat, producen piezas que son colocadas en un transportador. El rendimiento de la 1º es el doble de la 2º. La 1º produce un 60% de piezas sin defectos y la 2º un 84%.Se toma una pieza del transportador al azar, que probabilidad hay de que esta sea de la maq 1.

Ej.36) P/ aprobar un examen, un alumno cuenta con 10 min, se cuenta con 4 sobres cerrados con cada uno un problema, y hay que seleccionar 1. Se sabe que la Probabilidad de resolver el problema mas dificil es de 0.1, las otras 0.3, 0.5, 0.8. Si el alumno aprueba, cual es la proba de haber resuelto el problema mas dificil?

Bueno si alguien me podria dar una mano, me vendria bien, por la verdad se me esta complicando con unos ejercicios y no los logro entender.. Saludoss
(Este mensaje fue modificado por última vez en: 08-04-2012 20:21 por Aye.)
16-04-2011 23:48
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Anirus Sin conexión
Super Moderador
Sin estado :)
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.163
Agradecimientos dados: 77
Agradecimientos: 194 en 69 posts
Registro en: Nov 2009
Mensaje: #2
RE: Probabilidad
30)Dos máquinas automáticas, producen piezas idénticas que son colocadas en un transportador común. El rendimiento de la primera máquina es el doble del correspondiente a la segunda. La primera produce un promedio del 60% de las piezas sin defectos y la segunda un 84%. Una pieza que se toma del transportador resulta sin defectos. Encuentre la probabilidad de que esta pieza haya sido producida por la primer máquina.

Datos:
A = Produjo máquina 1.
B = Produjo máquina 2.
D = defectuoso.


El rendimiento de 1 es el doble de la otra, entonces la 1º produce 2/3 y la 2º 1/3. (Esto sale de pensar en como dividir a 1 en dos partes tales que una sea el doble de la otra =P)

P(A) = 2/3
P(B) = 1/3


La primera produce 60% sin defectos, es decir, la probabilidad de que sea no sea defectuoso si es producido por la máquina 1 es 0.6
P(-D|A) = 0.6

Idem para la segunda:
P(-D|B)= 0.84

Y la pregunta que te hacen es "si no es defectuosa, cuál es la probabilidad de que haya sido producida por la 1º?", es decir, P(A|-D)

Para calcularlo tenemos que saber primero P(-D).

Como {A,B} es una partición del conjunto(regla de la probabilidad total):






Casi todos los ejercicios del final de la unidad 1 se resuelven así, calculando primero la probabilidad total de algo teniendo las probabilidades condicionales y después usando eso que calculaste para resolver otra probabilidad condicional.





36) Para aprobar un examen, un alumno debe resolver un problema de 10 minutos. Se cuenta con 4 sobres cerrados, cada uno con un problema, de los cuales debe seleccionar uno. Se sabe por otras experiencias que la probabilidad de resolver el problema más difícil es de 0.1. Las otras probabilidades son 0.3, 0.5 y 0.8. Si el alumno aprueba el examen. ¿Cuál es la probabilidad de que haya seleccionado el problema más difícil?

Datos:

D: seleccionó exámen difícil.
Ei: seleccionó exámen i.
A: Aprobó.


Como son cuatro sobres y ninguno es más bonito que el otro, todos tienen la misma probabilidad de que los elijan, que es 1/4.

P(D) = P(E1) = P(E2) = P(E3) = 1/4

Probabilidad de aprobar si le tóco el más dificil: P(A|D) = 0.1

P(A|E1) = 0.3
P(A|E2) = 0.5
P(A|E3)= 0.8


Probabilidad de que le haya tocado el más difícil si aprobó: P(D|A)

A partir de acá es igual que el anterior.

Calculamos P(A).

P(A) = P(D)*P(A|D) + P(E1)*P(A|E1) + P(E2)*P(A|E2) + P(E3) * P(A|E3)
P(A) = 0.425

Ahora obtenemos P(D|A)

(Este mensaje fue modificado por última vez en: 17-04-2011 03:15 por Anirus.)
17-04-2011 02:45
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.