Donar $20 Donar $50 Donar $100 Donar mensualmente
 


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Problema de Algebra
Autor Mensaje
luchoatr Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 4
Agradecimientos: 0 en 0 posts
Registro en: Mar 2014
Mensaje: #1
Problema de Algebra Parciales Álgebra y Geometría Analítica
me pide este siguiente ejercicio y estoy trabado en una parte, supongo que es por sacar mal los planos, alguien me puede ayudar?

Dado el haz de planos x+y-z+k(2y+z+1)=0 con keR, analice si existe algun plano Pi del haz tal que la proyeccion de la recta r: (x,y,z) : (1,0,0) + t(-1,1,2) sobre el plano Pi sea un punto. Indique las coordenadas de dicho punto.

dejo mi mail

lucho_the_doctor@hotmail.com

Desde ya,muchas gracias
05-07-2014 20:24
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Dios Sin conexión
Presidente del CEIT
.
********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.057
Agradecimientos dados: 33
Agradecimientos: 151 en 130 posts
Registro en: Dec 2011
Mensaje: #2
RE: Problema de Algebra
1) ¿En qué parte estás trabado? ¿Qué hiciste hasta ahora?
2) No nos vamos a poner a mandarte mails para contestarte. Si querés eso, mandale mail a tu profesor.

Para el ejercicio lo que tenés que hacer es verificar si hay algún plano que tenga su vector normal paralelo al director de la recta.

«(…)Se arman paquetes… ¿eh?… tecnológicos… tecnológicos portes de… en donde están… este… interrelacionados con las otras capas.(…)»
05-07-2014 21:04
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
luchoatr Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 4
Agradecimientos: 0 en 0 posts
Registro en: Mar 2014
Mensaje: #3
RE: Problema de Algebra
(05-07-2014 21:04)Dios escribió:  1) ¿En qué parte estás trabado? ¿Qué hiciste hasta ahora?
2) No nos vamos a poner a mandarte mails para contestarte. Si querés eso, mandale mail a tu profesor.

Para el ejercicio lo que tenés que hacer es verificar si hay algún plano que tenga su vector normal paralelo al director de la recta.

lo pense asi, pero tengo problemas para sacar un plano del haz
lo que yo hice es esto
x+y-z+k(2y+z+1)=0
x+y-z+2ky+kz+k=0
A(x+y-z+0)+B(0+2ky+kz+k)=0

eso es lo que tengo hecho en el haz, pero no se si esta bien, porq cuando saco el plano y hago la igualacion entre la normal del plano y el vector director de la recta, no me dan.
05-07-2014 21:24
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Dios Sin conexión
Presidente del CEIT
.
********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.057
Agradecimientos dados: 33
Agradecimientos: 151 en 130 posts
Registro en: Dec 2011
Mensaje: #4
RE: Problema de Algebra
¿Y por qué lo agrupás así? ¿Qué es A y B?
Agrupá los coeficientes de manera que quede claro cuál afecta a los x, a los y y a los z. Esos coeficientes serán los componentes del vector normal a ese plano.

«(…)Se arman paquetes… ¿eh?… tecnológicos… tecnológicos portes de… en donde están… este… interrelacionados con las otras capas.(…)»
05-07-2014 21:57
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Giannn Sin conexión
Secretario General
Mar de fondo
*******

Ing. Industrial
Otra

Mensajes: 861
Agradecimientos dados: 25
Agradecimientos: 51 en 47 posts
Registro en: Jul 2012
Mensaje: #5
RE: Problema de Algebra
(05-07-2014 21:04)Dios escribió:  1) ¿En qué parte estás trabado? ¿Qué hiciste hasta ahora?
2) No nos vamos a poner a mandarte mails para contestarte. Si querés eso, mandale mail a tu profesor.

Para el ejercicio lo que tenés que hacer es verificar si hay algún plano que tenga su vector normal paralelo al director de la recta.

Bájale la espuma a tu chocolate
05-07-2014 21:57
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Giannn recibio 1 Gracias por este post
luchoatr (05-07-2014)
Dios Sin conexión
Presidente del CEIT
.
********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.057
Agradecimientos dados: 33
Agradecimientos: 151 en 130 posts
Registro en: Dec 2011
Mensaje: #6
RE: Problema de Algebra
Y encima el forro viene y te pone gracias. Después se quejan cuando soy ortiba,

«(…)Se arman paquetes… ¿eh?… tecnológicos… tecnológicos portes de… en donde están… este… interrelacionados con las otras capas.(…)»
05-07-2014 22:07
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Dios recibio 1 Gracias por este post
tatantatan (06-07-2014)
Giannn Sin conexión
Secretario General
Mar de fondo
*******

Ing. Industrial
Otra

Mensajes: 861
Agradecimientos dados: 25
Agradecimientos: 51 en 47 posts
Registro en: Jul 2012
Mensaje: #7
RE: Problema de Algebra
(05-07-2014 22:07)Dios escribió:  Y encima el forro viene y te pone gracias. Después se quejan cuando soy ortiba,

[Imagen: Tom_Cruise.jpeg]
05-07-2014 22:11
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Elmats Sin conexión
Presidente del CEIT
Oh my gauss
********

Otra
UBA - Ciencias Exactas y Naturales

Mensajes: 1.307
Agradecimientos dados: 25
Agradecimientos: 108 en 69 posts
Registro en: Mar 2012
Mensaje: #8
RE: Problema de Algebra
Ehm lo vi medio por arriba, pero para que la proyección sea un punto el vector director de la recta tiene que ser el mismo que el vector normal del plano. De ahí te debería salir.

“Our virtues and our failings are inseparable, like force and matter. When they separate, man is no more.”
05-07-2014 22:29
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
luchoatr Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 4
Agradecimientos: 0 en 0 posts
Registro en: Mar 2014
Mensaje: #9
RE: Problema de Algebra
(05-07-2014 21:57)Dios escribió:  ¿Y por qué lo agrupás así? ¿Qué es A y B?
Agrupá los coeficientes de manera que quede claro cuál afecta a los x, a los y y a los z. Esos coeficientes serán los componentes del vector normal a ese plano.

me podrias mostrar como agruparlos? porq no termino de entender tu "explicacion"
05-07-2014 23:36
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Elmats Sin conexión
Presidente del CEIT
Oh my gauss
********

Otra
UBA - Ciencias Exactas y Naturales

Mensajes: 1.307
Agradecimientos dados: 25
Agradecimientos: 108 en 69 posts
Registro en: Mar 2012
Mensaje: #10
RE: Problema de Algebra
obs: Vr=(-1,1,2)

x+y-z+k(2y+z+1)=0
x+y-z + k2y + kz+ k=0
x+(1+2k)y+(k-1)z+k=0
Sistema a resolver:
x=-1
1+2k=1
k-1=2

No existe K pertenecienete a los reales que cumpla lo anterior => no existe plano pi tal que... bla bla bla.

“Our virtues and our failings are inseparable, like force and matter. When they separate, man is no more.”
05-07-2014 23:42
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Elmats recibio 1 Gracias por este post
luchoatr (05-07-2014)
luchoatr Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 4
Agradecimientos: 0 en 0 posts
Registro en: Mar 2014
Mensaje: #11
RE: Problema de Algebra
(05-07-2014 23:42)Elmats escribió:  obs: Vr=(-1,1,2)

x+y-z+k(2y+z+1)=0
x+y-z + k2y + kz+ k=0
x+(1+2k)y+(k-1)z+k=0
Sistema a resolver:
x=-1
1+2k=1
k-1=2

No existe K pertenecienete a los reales que cumpla lo anterior => no existe plano pi tal que... bla bla bla.

Muchas gracias, la verdad que me re ayudo, pero en el caso donde igualas, en X=1 no seria 1=1??
Yo estaba agrupando mal, pero aun asi me seguia dando que k no existia.
Muchas gracias, me re sirvio!
05-07-2014 23:48
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.