Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[APORTE] AM2 - Final 09-12-2014 [resuelto]
Autor Mensaje
JuanPablo Sin conexión
Militante
Sin esfuerzo no hay recompensa
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 58
Agradecimientos dados: 35
Agradecimientos: 14 en 5 posts
Registro en: Sep 2009
Mensaje: #1
[APORTE] AM2 - Final 09-12-2014 [resuelto] Finales Análisis Matemático II
Buenas noches,

Les dejo el Final de Análisis Matemático II que tomaron en el día de hoy.
Me fue mal, por lo que voy a intentar resolverlo y cuando tenga algo lo compartiré.

   


Saludos,
Juan Pablo
Otros adjuntos en este tema
.jpg  escanear0014.jpg ( 722,89 KB / 246) por Marcos02
(Este mensaje fue modificado por última vez en: 10-12-2014 00:31 por Saga.)
09-12-2014 22:53
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] JuanPablo recibio 4 Gracias por este post
Santi Aguito (09-12-2014), xavi82 (10-12-2014), tatantatan (10-12-2014), Jaraf (12-12-2014)
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.670 en 914 posts
Registro en: Sep 2009
Mensaje: #2
RE: [APORTE] AM2 - Final 09-12-2014
Les adjunto mi resolucion... revisen las cuentas por las dudas porque toy medio enfermo jeje

T1) lo pienso ...creo que lo saque .. por definicion de cambio de variable

\[\iint_{D_{xy}} f(x,y)dxdy=\iint_{D_{uv}}f(g(u,v))|D_g| dudv\]

por hipotesis

\[\iint_{D_{xy}} f(x,y)dxdy=\iint_{D_{uv}}f(g(u,v))|D_g| dudv=35\]

g esta definida por

\[g(u,v)=(2u+v,u-3v)\to |D_g|=7\]

finalmente

\[7\iint_{D_{uv}}f(g(u,v)) dudv=35\to \iint_{D_{uv}}f(g(u,v)) dudv=5\]

T2) El conjunto de nivel tres transforma la funcion en

\[x^2y+y^2-y=0\to y[(x^2-1)+y]=0\]

entonces la region de integracion esta definida por

\[y=0\quad y=1-x^2\]

por simetria limito al primer cuadrante y multiplico por dos al area total

\[A=2\int_{0}^{1}\int_{0}^{1-x^2}dydx=\frac{4}{3}\]

wolfram

E1) si la funcion admite funcion potencial entonces su matriz jacobiana es simetrica ... haciendo las cuentas

\[1+g'(x)=g(x)\]

cambio

\[y=g(x)\]

la ED a resolver es

\[y'=y-1\]

integrando o por variacion de parametros se obtiene

\[g(x)=Me^x+1\]

para obtener el valor de M utilizamos el hecho que

\[f(0,0)=(1+0,0+g(0))=(1,3)\to g(0)=3\]

reemplazando la funcion g pedida es

\[g(x)=2e^x+1\]

para hallar el potencial se cumple que

\[\nabla \varphi =f\to \dfrac{d\varphi}{dx}=1+2e^xy+y\quad \dfrac{d\varphi}{dy}=x+2e^x+1\]

integrando , la funcion potencial pedida es

\[\varphi(x,y)=x+2e^xy+yx+y+K\]

luego la circulacion es independiente de la trayectoria, por ende

\[\omega=\varphi(B)-\varphi(A)=\varphi(0,3)-\varphi(0,1)=6\]

E2) de las restricciones impuestas se puede observar que

\[y^2\leq z\leq 4-x\]

por transitividad

\[y^2\leq 4-x\to 0\leq x\leq4-y^2\]

nuevamente por transitividad

\[0\leq4-y^2\to 0\leq y\leq 2\]

finalmente el volumen esta definido por la integral

\[V=\int_{0}^{2}\int_{0}^{4-y^2}\int_{y^2}^{4-x} dzdxdy=\frac{128}{15}\]

wolfram

E3) parametrizo la superficie sobre la cual quieren que calcule el flujo y defino la funcion vectorial g

\[g:R^2\to R^3/g(x,y)=\left ( x,y,2-\frac{1}{2}x^2 \right )\]

la normal esta definida por el producto vectorial de los elementales

\[n=g'_x\times g'_y=(x,0,1)\]

orientada positivamente , luego el flujo esta definido por

\[\varphi=\iint f(g(x,y)) n dS=\iint x^2+4 dxdy\]

para los limites de integracion , utilizo las restricciones impuestas por el problema

\[0\leq y\leq x^2\]

en el prime octante implica

\[z\geq 0\to 2-\frac{1}{2}x^2\geq 0\to 0\leq x\leq 2\]

luego

\[\varphi=\int_{0}^{2}\int_{0}^{x^2}x^2+4 dydx=\frac{256}{15}\]

wolfram

E4) defino

\[F(x,y,z)=-3x^2-y^3+3y^2-5+z\]

el gradiente es

\[\nabla F(x,y,z)=(-6x,-3y^2+6y,1)\]

el plano tangente a F es paralelo al xy entonces sus normales son proporcionales ... por algebra

\[\nabla F(x,y,z)=(-6x,-3y^2+6y,1)=\alpha(0,0,1)\]

de donde se verifica que

\[-6x=0\to x=0\quad -3y(y-2)=0\to y=0\quad y=2\]

los puntos son

\[A=(0,0) \quad B=(0,2)\]

haciendo las cuentas respectivas el hesiano de f es

\[H(x,y)=\begin{pmatrix}6 & 0\\ 0 & 6y-6\end{pmatrix}\]

luego

\[H(0,0)=\begin{pmatrix}6 & 0\\ 0 &-6\end{pmatrix}\]

punto ensilladura

\[H(0,2)=\begin{pmatrix}6 & 0\\ 0 &6\end{pmatrix}\]

minimo local

finalmente los puntos pedidos son

\[P_{ens}=(0,0,5)\quad Q_{min}=(0,2,1)\]

avisen si mande fruta en algun lado thumbup3

(Este mensaje fue modificado por última vez en: 12-12-2014 03:27 por Saga.)
10-12-2014 00:30
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 7 Gracias por este post
Bebop (10-12-2014), maty711 (10-12-2014), Jaraf (12-12-2014), JuanPablo (15-12-2014), osm (03-02-2015), Anabeella (23-07-2015), Legas (08-02-2017)
Pianta Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 14
Agradecimientos dados: 8
Agradecimientos: 1 en 1 posts
Registro en: Apr 2011
Mensaje: #3
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
Saga sos groso y te debo la materia mil gracias!

Ayer aprobé este final en mi última chance antes de recursarla, ya me veía en febrero adentro de lugano haciendo el curso. (Concuerdo con tus resultados salvo el E4 que no lo hice)



CHAU AM2!!
Dimitri
10-12-2014 14:26
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.670 en 914 posts
Registro en: Sep 2009
Mensaje: #4
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(10-12-2014 14:26)Pianta escribió:  Saga sos groso y te debo la materia mil gracias!

Ayer aprobé este final en mi última chance antes de recursarla, ya me veía en febrero adentro de lugano haciendo el curso. (Concuerdo con tus resultados salvo el E4 que no lo hice)



CHAU AM2!!
Dimitri

genial Pianta felicitaciones ... una menos camino al titulo thumbup3 si concuerdas con mis resultados entonces me bajo la fiebre cuando lo resolvi jejeje solo a mi me da gripe a esta altura del año jajaj

10-12-2014 14:35
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
flaviodonato10 Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 1
Agradecimientos dados: 0
Agradecimientos: 0 en 0 posts
Registro en: Sep 2011
Mensaje: #5
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
Los felicito si aprobaron, yo no me tiré porque aún no la tenia muy clara, este año se me vence y es mi última chance antes del fucking curso de verano yuk

Espero que el martes que viene me vaya bien, si saben de alguien que cobre por hacerlo estoy dispuesto a pagar jajaja.

Abrazo y gracias por el aporte.
11-12-2014 08:26
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.670 en 914 posts
Registro en: Sep 2009
Mensaje: #6
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]

Off-topic:

(11-12-2014 08:26)flaviodonato10 escribió:  Espero que el martes que viene me vaya bien, si saben de alguien que cobre por hacerlo estoy dispuesto a pagar jajaja.

Se acercan las vacaciones... mi tarjeta esta en rojo .... la expensas vencidas mmmm =P lolwhistle jejeje

(Este mensaje fue modificado por última vez en: 11-12-2014 11:06 por Saga.)
11-12-2014 11:04
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
marianoBR Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 4
Agradecimientos dados: 0
Agradecimientos: 3 en 1 posts
Registro en: Aug 2011
Mensaje: #7
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
Saga, en el H(0,0) que lo pones como un maximo local, no seria un punto nulo porque da menor a cero? Yo puse eso.
Off-topic:
Te debo la vida porque pude aprobar el final thumbup3thumbup3
11-12-2014 15:00
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.670 en 914 posts
Registro en: Sep 2009
Mensaje: #8
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(11-12-2014 15:00)marianoBR escribió:  Saga, en el H(0,0) que lo pones como un maximo local, no seria un punto nulo porque da menor a cero? Yo puse eso.

punto nulo ??? no entiendo Hxx>0 y el det (H)<0 por teoria eso es maximo local , no entiendo porque decis punto nulo ?

Cita:
Off-topic:
Te debo la vida porque pude aprobar el final thumbup3thumbup3

genial , una menos camino al titulo felicidades

11-12-2014 15:18
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
nacho5 Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Mecánica
Facultad Regional Buenos Aires

Mensajes: 17
Agradecimientos dados: 0
Agradecimientos: 0 en 0 posts
Registro en: Aug 2011
Mensaje: #9
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
Hola como andan?, hice el E1 y me dio igual menos el resultado. creo que te confundiste en tipear nomás puede ser? ami me da 6, ya que cuando reemplazo el (0,3) da 9 y cuando reemplazo el (0,1) da 3.
11-12-2014 18:49
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.670 en 914 posts
Registro en: Sep 2009
Mensaje: #10
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(11-12-2014 18:49)nacho5 escribió:  Hola como andan?, hice el E1 y me dio igual menos el resultado. creo que te confundiste en tipear nomás puede ser? ami me da 6, ya que cuando reemplazo el (0,3) da 9 y cuando reemplazo el (0,1) da 3.

por suerte aclare que estaba enfermo, y que revisen las cuentas por las dudas ... gracias por la correccion ahora lo edito thumbup3

11-12-2014 21:11
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Jaraf Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 14
Agradecimientos dados: 125
Agradecimientos: 120 en 5 posts
Registro en: Oct 2011
Mensaje: #11
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(11-12-2014 15:18)Saga escribió:  
(11-12-2014 15:00)marianoBR escribió:  Saga, en el H(0,0) que lo pones como un maximo local, no seria un punto nulo porque da menor a cero? Yo puse eso.

punto nulo ??? no entiendo Hxx>0 y el det (H)<0 por teoria eso es maximo local , no entiendo porque decis punto nulo ?

Hola, perdon si me equivoco, pero tengo entendido que cuando el det (H)<0 es punto de ensilladura.


PD: Muchas gracias SAGA, me esta sirviendo un monton todo lo que haces, MUCHAS GRACIAS
11-12-2014 23:59
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
nacho5 Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Mecánica
Facultad Regional Buenos Aires

Mensajes: 17
Agradecimientos dados: 0
Agradecimientos: 0 en 0 posts
Registro en: Aug 2011
Mensaje: #12
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
Gracias a vos por ayudarnos!

No entiendo el E4, porque cambias los signos de f cuando definís F y agregas el Z ? , perdón por la ignorancia
(Este mensaje fue modificado por última vez en: 12-12-2014 00:52 por nacho5.)
12-12-2014 00:16
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Virus Sin conexión
Profesor del Modulo A
Programador
*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 361
Agradecimientos dados: 37
Agradecimientos: 56 en 42 posts
Registro en: Feb 2012
Mensaje: #13
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(12-12-2014 00:16)nacho5 escribió:  Gracias a vos por ayudarnos!

No entiendo el E4, porque cambias los signos de f cuando definís F y agregas el Z ? , perdón por la ignorancia

Si no me equivoco creo que quiso definir el conjunto de nivel F, o sea z = f(x,y) entonces F(x,y,z) = 0
Edit: Si te fijas simplemente lo que hizo fue despejar z = f(x,y)
(Este mensaje fue modificado por última vez en: 12-12-2014 02:16 por Virus.)
12-12-2014 02:15
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
nacho5 Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Mecánica
Facultad Regional Buenos Aires

Mensajes: 17
Agradecimientos dados: 0
Agradecimientos: 0 en 0 posts
Registro en: Aug 2011
Mensaje: #14
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(12-12-2014 02:15)Virus escribió:  
(12-12-2014 00:16)nacho5 escribió:  Gracias a vos por ayudarnos!

No entiendo el E4, porque cambias los signos de f cuando definís F y agregas el Z ? , perdón por la ignorancia

Si no me equivoco creo que quiso definir el conjunto de nivel F, o sea z = f(x,y) entonces F(x,y,z) = 0
Edit: Si te fijas simplemente lo que hizo fue despejar z = f(x,y)


Debe ser la hora ya jaja gracias, no me di cuenta
12-12-2014 02:59
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.670 en 914 posts
Registro en: Sep 2009
Mensaje: #15
RE: [APORTE] AM2 - Final 09-12-2014 [resuelto]
(11-12-2014 23:59)Jaraf escribió:  Hola, perdon si me equivoco, pero tengo entendido que cuando el det (H)<0 es punto de ensilladura.

tenes toda la razon ... mande fruta ahora lo edito , gracias por la correccion ... esta bueno que entre todos lo corrigamos al final =)

Gracias por la aclaracion a nacho5 Virus

(Este mensaje fue modificado por última vez en: 12-12-2014 03:29 por Saga.)
12-12-2014 03:26
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.