Comunicado sobre el contenido presente en el foro


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Duda] Ejercicio de coordenadas
Autor Mensaje
Feer Sin conexión
Presidente del CEIT
win-win
**********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 4.653
Agradecimientos dados: 607
Agradecimientos: 2.733 en 438 posts
Registro en: Apr 2010
Mensaje: #1
[Duda] Ejercicio de coordenadas Ejercicios Análisis Matemático II
Bueno, nada.. estaba mirando las hojas y me cruce con este y no me sale, tengo que calcular la integral en cartesianas, algunas ayudas?=P

   


Gracias =)

[Imagen: digitalizartransparent.png]
29-09-2012 19:51
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.758
Agradecimientos dados: 176
Agradecimientos: 1.676 en 917 posts
Registro en: Sep 2009
Mensaje: #2
RE: [Duda] Ejercicio de coordenadas
para empezar sabes que en polares el resultado de la integral es \[\frac{13}{60}\pi\approx 0.680678\]

\[rdzdrd\theta=dzdydx\]

ademas por definición \[r=\sqrt{x^2+y^2}\]

bueno es solo aplicar eso mira, de

\[r\leq z\leq 2-r^2\]

aplicando la definicion, obtenes

\[\sqrt{x^2+y^2}\leq z\leq 2-x^2-y^2\]

de \[0\leq r\leq 1\]

obtenes

\[x^2+y^2\leq 1\]

listo ahora por el dato del angulo y observacion del dibujo la integral a resolver es

\[\iiint_R f(r,\theta ,z)rdzdrd\theta=\int_{-1}^{1}\int_{0}^{\sqrt{1-x^2}}\int_{\sqrt{x^2+y^2}}^{2-x^2-y^2}\sqrt{x^2+y^2}dzdydx\approx 0.680678\]

podes verificarlo thumbup3

30-09-2012 01:10
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 1 Gracias por este post
Feer (30-09-2012)
Feer Sin conexión
Presidente del CEIT
win-win
**********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 4.653
Agradecimientos dados: 607
Agradecimientos: 2.733 en 438 posts
Registro en: Apr 2010
Mensaje: #3
RE: [Duda] Ejercicio de coordenadas
Dudas:

Osea veo lo del \[0\leq r\leq 1\] y veo que queda: \[0\leq x^2+y^2\leq 1\] -> \[x^2+y^2\leq 1\]

Veo las variaciones de z lo mas bien.
Pero las otras dos variaciones...

x va entre -1 y 1?
como se que la que no va entre -1 y 1 es y?

No entiendo esa segunda parte, gracias.

[Imagen: digitalizartransparent.png]
(Este mensaje fue modificado por última vez en: 30-09-2012 01:31 por Feer.)
30-09-2012 01:26
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.758
Agradecimientos dados: 176
Agradecimientos: 1.676 en 917 posts
Registro en: Sep 2009
Mensaje: #4
RE: [Duda] Ejercicio de coordenadas
(30-09-2012 01:26)Feer escribió:  Pero las otras dos variaciones...

x va entre -1 y 1?

Asi es

Cita:como se que la que no va entre -1 y 1 es y?

porque si fuese así el angulo estaria entre \[-\frac{\pi}{2}\leq \theta\leq \frac{\pi}{2}\]

ya aca el angulo va de 0 a \[\pi\] por eso tomo la parte de arriba de la circunferencia y la expreso en funcion de \[x\], y no de \[y\], entendes? por eso aclare, "por el dato del

angulo" sin ese dato no puedo definir asi como lo hice ;)

30-09-2012 01:33
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Feer Sin conexión
Presidente del CEIT
win-win
**********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 4.653
Agradecimientos dados: 607
Agradecimientos: 2.733 en 438 posts
Registro en: Apr 2010
Mensaje: #5
RE: [Duda] Ejercicio de coordenadas
joya lo puedo pensar entonces como si no estuviera z y pensarlo en el plano xy y sacar los limites de integración de ahí y después agregar z...?

Gracias!

[Imagen: digitalizartransparent.png]
30-09-2012 01:43
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.758
Agradecimientos dados: 176
Agradecimientos: 1.676 en 917 posts
Registro en: Sep 2009
Mensaje: #6
RE: [Duda] Ejercicio de coordenadas
Asi es o tambien si no te convence podes pensarlo de la siguiente manera, de

\[r\leq z\leq 2-r^2\]

por transitividad

\[r\leq 2-r^2\]

de donde para hallar el r

\[\\r^2+r-2=(r-1)\underbrace{(r+2)}_{>0}\leq 0\to r-1\leq 0\rightarrow r=\sqrt{x^2+y^2}\leq 1\to x^2+y^2\leq 1\]

(Este mensaje fue modificado por última vez en: 30-09-2012 02:02 por Saga.)
30-09-2012 01:59
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 1 Gracias por este post
Feer (30-09-2012)
Feer Sin conexión
Presidente del CEIT
win-win
**********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 4.653
Agradecimientos dados: 607
Agradecimientos: 2.733 en 438 posts
Registro en: Apr 2010
Mensaje: #7
RE: [Duda] Ejercicio de coordenadas
Dale muchas gracias!

[Imagen: digitalizartransparent.png]
30-09-2012 02:03
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.