Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[DUDA] Taylor ej final 9/3/11
Autor Mensaje
Juli9 Sin conexión
Empleado del buffet
Sin estado :(
*

-----
-----

Mensajes: 23
Agradecimientos dados: 45
Agradecimientos: 4 en 4 posts
Registro en: Aug 2012
Mensaje: #1
[DUDA] Taylor ej final 9/3/11 Ejercicios Análisis Matemático I
Dada \[F(x)=\int_{0}^{x}[1+sen(sen t)] dt\]
a) Halle el polinomio de Taylor de orden 2 den un entorno de a=0
b) Calcule aprox F(0.1) utilizando el polinomio hallado y acote el error.

a) Bueno, operando llegué a:
\[f'(x)= 1+sen(senx)\]
\[f''(x)=cos(senx)*cos(x)\]

y el polinomio:

\[P(x)=x+\frac{x^2}{2}\]

b) Reemplazo 0.1 en P(x) y me da 0.105.

Mi duda sería cómo acotar el error. Yo hice algo, pero creo que la RE pifié, siempre me costó esto:

0<c<0.1
sen(0) < sen© < sen(0.1)
cos(sen(0))cos(0) < cos(sen©)cos© < cos(sen(0.1))cos(0.1)
\[1*\frac{0.1^2}{2}>cos(sen©)cos©*\frac{0.1^2}{2}>0.99999 *\frac{0.1^2}{2}\]

Por lo tanto:
\[|Tc| = \left | cos(sen©)cos© * \frac{0.1^2}{2!} \right | < \left | \frac{0.1^2}{2!}*1 \right |\approx 5*10^{-3} < 10^{-2}\]

Por lo tanto, 2 cifras exactas


Si saben cómo se resuelve, se los voy a agradecer =)
20-05-2013 23:03
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Taylor Sin conexión
Secretario General
Ingeniería Industrial
*******

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 864
Agradecimientos dados: 98
Agradecimientos: 354 en 73 posts
Registro en: Apr 2012
Mensaje: #2
RE: [DUDA] Taylor ej final 9/3/11
Me llamaban?

20-05-2013 23:08
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.