Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Transformaciones lineales con autovalores
Autor Mensaje
147456 Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Química
Facultad Regional Resistencia

Mensajes: 1
Agradecimientos dados: 0
Agradecimientos: 0 en 0 posts
Registro en: Jul 2019
Mensaje: #1
Music Transformaciones lineales con autovalores Dudas y recomendaciones Álgebra y Geometría Analítica
Buenas, alguien me ayuda a resolver este ejercicio sobre todo en la parte que hay que usar los autovalores, muchas gracias.


Archivo(s) adjuntos Imagen(es)
   
(Este mensaje fue modificado por última vez en: 23-07-2019 16:40 por 147456.)
23-07-2019 16:38
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
manoooooh Sin conexión
Profesor del Modulo A
Sin estado :(
*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 340
Agradecimientos dados: 0
Agradecimientos: 191 en 113 posts
Registro en: Feb 2017
Mensaje: #2
RE: Transformaciones lineales con autovalores
Hola 147456, bienvenido al foro.

Transcribo el enunciado:

Enunciado escribió:Dados los siguientes subespacios vectoriales de \(\mathcal{M}_{2\times2}(\Bbb{R})\): \[\Bbb{S}=\left\lbrace\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\mathcal{M}_{2\times2}(\Bbb{R})\mid a+b=0,\;c+d=0\right\rbrace\quad\text{y}\quad\Bbb{W}=L\left(\begin{pmatrix}0&1\\2&0\end{pmatrix},\begin{pmatrix}1&0\\3&1\end{pmatrix}\right)\] indicar cómo se puede definir una transformación lineal \(T\colon\mathcal{M}_{2\times2}(\Bbb{R})\to\mathcal{M}_{2\times2}(\Bbb{R})\) tal que: \(\ker(T)=\Bbb{S}\cap\Bbb{W}\) y tenga a \(2\) y \(3\) como autovalores.

Debés empezar por hallar una base de \(\ker(T)\). Para ello necesitás conocer \(\Bbb{S}\cap\Bbb{W}\). Por ejemplo: \begin{align*}\Bbb{W}&=L\left(\begin{pmatrix}0&1\\2&0\end{pmatrix},\begin{pmatrix}1&0\\3&1\end{pmatrix}\right)\\
&=\left\lbrace\alpha,\beta\in\Bbb{R}\mid\alpha\begin{pmatrix}0&1\\2&0\end{pmatrix}+\beta\begin{pmatrix}1&0\\3&1\end{pmatrix}\right\rbrace\\
&=\left\lbrace\alpha,\beta\in\Bbb{R}\mid\begin{pmatrix}\beta&\alpha\\2\alpha+3\beta&\beta\end{pmatrix}\right\rbrace\\
&\implies\begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}\beta&\alpha\\2\alpha+3\beta&\beta\end{pmatrix}\\
&\implies\left\lbrace\begin{aligned}&a=\beta\\&b=\alpha\\&c=2\alpha+3\beta\\&d=\beta\end{aligned}\right.\\
&\implies\left\lbrace\begin{aligned}&a=d\\&c=2b+3a\end{aligned}\right.\\
&\implies\Bbb{W}=\left\lbrace\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\mathcal{M}_{2\times2}(\Bbb{R})\mid a=d,\;c=2b+3a\right\rbrace.\end{align*} Cuando encuentres la intersección verás que \(\ker(T)=\left(\begin{smallmatrix}0&0\\0&0\end{smallmatrix}\right)\) y así \(\dim(\ker(T))=0\), lo que implica que \(T\) es inyectiva.

Sabiendo que toda transformación lineal \(T\colon\Bbb{V}\to\Bbb{V}\) queda definida por los transformados de una base de \(\Bbb{V}\), se puede considerar por ejemplo una transformación \(T\) tal que \[T\begin{pmatrix}1&0\\0&0\end{pmatrix}=2\begin{pmatrix}1&0\\0&0\end{pmatrix},\quad T\begin{pmatrix}0&1\\0&0\end{pmatrix}=3\begin{pmatrix}0&1\\0&0\end{pmatrix}.\] Ahora intentá seguir.

Saludos.
08-08-2019 23:36
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.