Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Análisis Matemático 2] - Ej. 2 c ecuaciones diferenciales
Autor Mensaje
rld Sin conexión
Secretario General
ლ(ಠ益ಠლ)
*******

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 788
Agradecimientos dados: 9
Agradecimientos: 13 en 12 posts
Registro en: Nov 2010
Mensaje: #1
[Análisis Matemático 2] - Ej. 2 c ecuaciones diferenciales Ejercicios Análisis Matemático II
Verifique que \[y^2 = C_1x + C_2\] es s.g. de \[yy'^2 + y^2y'' = 0\]. Halle la s.p. que en \[(1, y_0)\] tiene recta tangente de ecuación \[y=2x-1\].

No puedo ni verificar la s.g. ...ayuda?

ρλδ
(Este mensaje fue modificado por última vez en: 09-04-2012 21:10 por nanuiit.)
02-04-2012 23:13
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.669 en 914 posts
Registro en: Sep 2009
Mensaje: #2
RE: Ej. 2 c ecuaciones diferenciales
Tenes dos caminos o verificas que la SG verifica la ED, o que de la ED puedo obtener la SG si intentamos la seguna opcion

Planteamos como hipotesis, la definicion

\[(y\cdot y')'=y'y'+y'y''=y'^2+yy''\]

Sacamos factor comun en la ED original

\[y(y'^2+yy'')=0\]

por hipotesis

\[y(y\cdot y')=0\]

sabes que

\[y\neq 0 \vee yy'=0\]

de donde deducis que necesariamente se cumple que \[y'=0\]

por definicion, si la derivada de una funcion es igual a 0 implica que la funcion es una constante entonces \[y=k\], luego

\[yy'=k\rightarrow y\frac{dy}{dx}=k\rightarrow \int ydy=\int kdx=...\]

de aca ya podes demostrar lo que que pide el enunciado

(Este mensaje fue modificado por última vez en: 03-04-2012 01:39 por Saga.)
02-04-2012 23:34
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.756
Agradecimientos dados: 176
Agradecimientos: 1.669 en 914 posts
Registro en: Sep 2009
Mensaje: #3
RE: Ej. 2 c ecuaciones diferenciales
O mas fácil de la SG obtengamos la ED, derivando tenemos

\[2yy'=C\]

derivo otra vez

\[2(y'y'+yy'')=2(y'^2+yy'')=0 \to y'^2+yy''=0\]

multiplicando por y

\[yy'^2+y^2y''=0\]

para hallar la SP sabes que el punto \[(1,y_0)\] que pertenece a la curva que es tangente a la recta \[y=2x-1\], con esa info deducis que \[y_0=1\]

ya tenes las condiciones necesarias para determinar la SP \[y(1)=1\quad y'(1)=2\], de aca ya es solo tema de cuentas

(Este mensaje fue modificado por última vez en: 03-04-2012 14:10 por Saga.)
03-04-2012 01:28
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 4 Gracias por este post
nutters (26-03-2013), Liebe (29-03-2014), Cicloide (30-03-2014), alecho (25-03-2017)
durasno Sin conexión
Empleado de Fotocopiadora
Sin estado :(
**

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 40
Agradecimientos dados: 5
Agradecimientos: 7 en 7 posts
Registro en: Jan 2012
Mensaje: #4
RE: [Análisis Matemático 2] - Ej. 2 c ecuaciones diferenciales
Hola!!! alguien sabe de donde salio el dato y´(1)=2 ?? Porque en la guia de este año no esta, o saben como llegó a ese dato

Saludos
21-08-2014 10:26
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
rod77 Sin conexión
Presidente del CEIT
:o
********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.105
Agradecimientos dados: 139
Agradecimientos: 420 en 189 posts
Registro en: Mar 2011
Mensaje: #5
RE: [Análisis Matemático 2] - Ej. 2 c ecuaciones diferenciales
derivas el y=2x-1 , y te queda y'=2 ---> y'(1)=2
21-08-2014 10:33
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
xavi82 Sin conexión
Profesor del Modulo A
Sin estado :(
*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 246
Agradecimientos dados: 309
Agradecimientos: 97 en 50 posts
Registro en: Feb 2012
Mensaje: #6
RE: Ej. 2 c ecuaciones diferenciales
(02-04-2012 23:34)Saga escribió:  Tenes dos caminos o verificas que la SG verifica la ED, o que de la ED puedo obtener la SG si intentamos la seguna opcion

Planteamos como hipotesis, la definicion

\[(y\cdot y')'=y'y'+y'y''=y'^2+yy''\]

Sacamos factor comun en la ED original

\[y(y'^2+yy'')=0\]

por hipotesis

\[y(y\cdot y')=0\]

sabes que

\[y\neq 0 \vee yy'=0\]

de donde deducis que necesariamente se cumple que \[y'=0\]

por definicion, si la derivada de una funcion es igual a 0 implica que la funcion es una constante entonces \[y=k\], luego

\[yy'=k\rightarrow y\frac{dy}{dx}=k\rightarrow \int ydy=\int kdx=...\]

de aca ya podes demostrar lo que que pide el enunciado


Hola Saga,

estoy tratando de hacer el ej. 6 del TP1 que pide sacar la SG de la ED planteada en el ej. 2c.

Viendo el desarrollo de lo que hiciste en el post que quoteo, me surgen 2 dudas:

  1. ¿Deducís que y no es igual a cero por la definición de la SG en el ej. 2c?
  2. No llego a entender como pasas de si y = k entonces y · y' = k y de ahí obtenés la SG. Digo: ¿no quedaría y · y' = k · y' ?
(Este mensaje fue modificado por última vez en: 01-02-2015 11:34 por xavi82.)
01-02-2015 11:33
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
NNSinNombre Sin conexión
Empleado de Fotocopiadora
...
**

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 30
Agradecimientos dados: 16
Agradecimientos: 16 en 7 posts
Registro en: Mar 2014
Mensaje: #7
RE: Ej. 2 c ecuaciones diferenciales
Revivo este tema Saga

(03-04-2012 01:28)Saga escribió:  para hallar la SP sabes que el punto \[(1,y_0)\] que pertenece a la curva que es tangente a la recta \[y=2x-1\], con esa info deducis que \[y_0=1\]

No entiendo como deducis que \[y_0=1\]
Perdón, pero curse AM I hace 6 años y estoy un tanto oxidado =P
16-03-2016 16:44
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Santi Aguito Sin conexión
Presidente del CEIT
Newtoniano
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 1.240
Agradecimientos dados: 244
Agradecimientos: 624 en 338 posts
Registro en: Oct 2012
Mensaje: #8
RE: [Análisis Matemático 2] - Ej. 2 c ecuaciones diferenciales
Reemplazas el punto (1,yo) en la ecuación y =2x-1

Entonces:

yo = 2.1 - 1 = 1

Busca la excelencia, el éxito llegará
16-03-2016 18:22
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Santi Aguito recibio 1 Gracias por este post
NNSinNombre (18-03-2016)
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)



    This forum uses Lukasz Tkacz MyBB addons.